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Abstract. Ultrastrong confinement, long lifetime, and gate-tunability of graphene plasmon polaritons (GPPs)
motivate wide-ranging efforts to develop GPP-based active nanophotonic platforms. Incorporation of
topological phenomena into such platforms will ensure their robustness as well as enrich their capabilities
as promising test beds of strong light–matter interactions. A recently reported approach suggests an
experimentally viable platform for topological graphene plasmonics by introducing nanopatterned gates—
metagates. We propose a metagate-tuned GPP platform emulating a second-order topological crystalline
insulator. The metagate imprints its crystalline symmetry onto graphene by modulating its chemical potential
via field-effect gating. Depending on the gate geometry and applied voltage, the resulting two-dimensional
crystal supports either one-dimensional chiral edge states or zero-dimensional midgap corner states. The
proposed approach to achieving the hierarchy of nontrivial topological invariants at all dimensions lower
than the dimension of the host material paves the way to utilizing higher-order topological effects for on-
chip and ultracompact nanophotonic waveguides and cavities.
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1 Introduction
Nanoscale plasmonic excitations in graphene1 have proven their
versatile potential for nanophotonic device applications2,3

and fundamental studies of strong light–matter interaction4,5

owing to their field-effect tunability and ultrasubwavelength
confinement.6,7 In high-quality graphene encapsulated between
hexagonal boron nitride (hBN) layers, these plasmon polaritons
can propagate over long distances with minimal attenuation.8–10

In the past two years, researchers have sought new ways of com-
bining the established concepts of topological photonics11–17

with this attractive nanophotonic platform in order to further
enhance its robustness. The earliest proposals for topological
graphene plasmonics were based on nanopatterned graphene
with broken time-reversal symmetry (TRS) via external DC
magnetic fields.18,19 However, DC magnets are not compatible
with overall device miniaturization and even present a hindrance
to the plasmon detection tools such as scanning near-field

microscopes.1,3–10 Moreover, graphene patterning, even if done
over hBN-encapsulated structure for maximal protection,20

would considerably degrade the carrier mobility and introduce
severe damping of the graphene plasmon polaritons (GPPs).
Therefore, it is imperative to find an approach that preserves
both the graphene quality and the TRS.

Although TRS-preserving photonic topological insulator
(PTI) phases resembling spin-Hall electronic insulators have
been realized by emulating spin-1∕2 Kramers pairs using right/
left circulating21 or transverse electric/magnetic22 modes, this
approach is not applicable here because GPPs are essentially
scalar-like excitations due to their quasielectrostatic nature. The
remaining two options for TRS-invariant topological phases
are then valley-Hall insulators23–25 and topological crystalline
insulators.26–28 Earlier proposals29,30 for realizing these topologi-
cal phases with GPPs suggested specific spatial landscapes of
graphene optical conductivity, and our recent work31 suggested
a practical path to realizing a GPP-based valley-Hall insulator
using metagate-tuned graphene. A metagate, a designer nano-
patterned planar electrode, imprints its structural symmetry onto*Address all correspondence to Minwoo Jung, E-mail: mj397@cornell.edu
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the static carrier density landscape in graphene through the
field-effect gating. Modulation of the carrier density translates
into modulation of the optical conductivity, which creates a pho-
tonic crystal structure for GPPs. A similar method, which im-
parts a pattern to the dielectric spacer between graphene and
backgate, has been experimentally shown to create a photonic
crystal structure for GPPs while maintaining their long propa-
gation distance.32 These approaches are not deleterious to the
graphene quality because all patterning is done on the dielectric
(or metallic) substrate while leaving the graphene itself intact.

In this paper, we present a metagate-graphene geometry
that emulates topological crystalline insulators with GPPs.
The employed photonic structure corresponds to a honeycomb
lattice with a Kekulé distortion,33 which is known to produce
two topologically distinct phases depending on the distortion
directions.26,27 Orbital-locked chiral states arise at the boundary
between two distinct domains, and these confined edge modes
are shown to propagate freely around sharp corners with no re-
flection. Remarkably, a slightly modified structure can be used
to emulate topological midgap corner states34,35 of second-order
topological insulators (SOTIs), d-dimensional crystals support-
ing topological states of a dimension less than d − 1.36–43

We show that our metagate geometry successfully realizes these
phenomena by providing the first-principle calculations for the
GPPs and qualitatively comparing the results to a generic tight
binding model for Kekulé-textured graphene-like structures.
While second-order topological effects have been demonstrated
in macroscopic (photonic and phononic)39–42 and waveguide-
based34,43 systems, where the lattice spacing is much greater
than the photon/phonon wavelengths, our work presents the
first implementation of subwavelength polaritonic SOTI phases
hosted by a two-dimensional (2-D) material. We also estimate
how plasmonic band structures are affected by quantum non-
local effects of Dirac electrons.4

2 Methods
Chemical potential (Fermi level) landscapes from field-effect
gating using a metagate were obtained by electrostatic simula-
tions in COMSOL. In order to incorporate the quantum capaci-
tance effect of graphene, we considered the electrochemical
equilibrium condition, which was done by setting a graphene
sheet as a surface charge density element.31 The static surface
charge density on graphene was given as a function of the local
potential ½n ¼ ðeV∕ℏvFÞ2∕π�; therefore, an iterative solver was
used. Photonic bands of the GPPs were calculated using both
the in-house (Fourier-based quasielectrostatic) code31 and the
finite-elements (COMSOL) simulations. The two codes agree
well with each other, and we used them according to their com-
putational efficiency: the in-house code for obtaining the results
plotted in Figs. 1 and 4(c) and Fig. 6, COMSOL for the large-
domain simulation shown in Figs. 4(d) and 5.

3 Results

3.1 Metagate-Induced Plasmonic Crystal

The dispersion relation qðωÞ of the GPPs propagating in homo-
geneous graphene with a uniform chemical potential EF sur-
rounded by an embedding medium with a dielectric constant ε
is given by

jqj ¼ 2πϵℏ2

e2jEFj
ωðωþ iγÞ; (1)

where the semiclassical Drude conductivity,44 σDrude ¼
iðe2∕πℏ2ÞjEFj∕ðωþ iγÞ, of graphene is assumed. The finite
temperature effect would be negligible as long as kBT ≪ jEFj.
Here q and ω are the GPP’s 2-D wave vector and frequency,
respectively, γ is the phenomenological Drude loss correspond-
ing to free-carrier scattering, e is the electron charge, and ℏ is
Planck’s constant. Graphene’s chemical potential (correspond-
ing to the Fermi level of its free carriers) can be varied within
�1 eV by tuning the carrier density n through field-effect gating:
EF ¼ sgnðnÞℏvF

ffiffiffiffiffiffiffiffi
πjnjp

.45 Throughout this paper, we use the
n-dependent renormalized expression for the Fermi velocity vF.

46

Equation (1) implies that a periodic modulation in EF gen-
erates a periodic texture in the effective refractive index for
the propagating GPPs on graphene, thereby creating a photonic
crystal. A wide range of periodic modulation of EF can be
achieved using a metagate;31 see Fig. 1(a) for the metagate
geometry employed in the rest of this work. The metagate is
a thin slab of metal (perfect electric conductor or PEC) perfo-
rated by a periodic array of unit cells containing a circular hole
of radius r1 at its center and two identical holes of radius r2 at

(a)

(b)

(d)

(c)

(e)

Fig. 1 (a) Schematic of the platform: graphene over a metagate.
Left: lateral view of the entire structure and right: unit cell
geometry of the metagate. (b) Metagate-induced Fermi energy
EF ðx ; yÞ profile inside graphene (degenerate case: r1 ¼ r 2 ¼
120 nm). Solid (dashed) line: unit cell for nondegenerate
(degenerate) cases. (c) BZ and its high-symmetry points. Solid
(dashed) hexagons: BZ boundaries for the nondegenerate
(degenerate) cases. (d) Unfolded and (e) artificially folded BZs.
Parameters: a ¼ 600 nm, h1 ¼ 15 nm, h2 ¼ h3 ¼ 10 nm, and
V 0 ¼ 1 V throughout this paper.
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the periphery. When graphene is capacitively doped by this
structured gate, the area above the empty holes attracts a smaller
carrier density than the area above the unperforated regions. A
periodic landscape of EF produced by metagate-induced doping
is shown in Fig. 1(b) (a specific case of r1 ¼ r2 is depicted).
With an eye on future experimental realizations, our electrostatic
simulation assumes that graphene is hBN-encapsulated and
accounts for graphene’s quantum capacitance self-consistently
under electrochemical equilibrium in graphene.31,46

For the r1 ¼ r2 case shown in Fig. 1(b), the metagate is pat-
terned as a honeycomb lattice with a smaller unit cell consisting
of a single hole, as shown by the dashed line in Fig. 1(b). The
photonic band structure (PBS) of the terahertz (THz)-frequency
GPPs is shown in Fig. 1(d); it is calculated along the irreducible
boundary of the Brillouin zone (BZ) defined from the smaller
unit cell [dashed line in Fig. 1(c)]. As expected, the honeycomb
photonic lattice produces a twofold degenerate conical dispersion
at the two equivalent (k and k0) valleys. The presence of a
metallic gate in close proximity of the graphene layer is captured
by the linear dispersion relation of the so-called acoustic GPPs9

at small momenta jqj ≪ a−1 (i.e., near the γ-point of the BZ).
Also, it is previously reported that the screening through this
periodically structured gate, along with EF landscape, contributes
to stronger modulation of PBS.31 We also note the subwavelength
nature of the metagate (and, correspondingly, of the imprinted
photonic crystal): the unit cell periodicity a ¼ 600 nm is much
smaller than the free-space wavelength of the THz radiation. For
example, at the kðk0Þ point, we obtain an ultrahigh confinement
ratio λvacuum∕λGPP ∼ 140.

The folded band structure in Fig. 1(e) is identical to the one in
Fig. 1(d), except that it is drawn along the smaller BZ defined by
the original unit cell for generic (r1 ≠ r2) cases. The double
degeneracy of the Dirac cones at Γ originates from the trivial
band folding from the “true” (minimal) first BZ to an artificially
shrunken BZ [i.e., from the dashed hexagon to the solid hexagon
in Fig. 1(c)]. The four-fold degenerate modes at Γ shown here
are the fundamental building blocks26,27 for the topological crys-
talline phases discussed below.

3.2 Kekulé-Textured Honeycomb Lattice

To highlight the underlying physics, we provide a well-known
tight-binding (TB) model for a Kekulé-textured graphene-like
system.26 Figure 2(a) illustrates the setting of the TB model and
its mapping onto the metagate-tuned graphene structure shown

in Fig. 1. The hexagonal unit cell of our metagate can be divided
into six equivalent segments [see the shaded triangle in
Fig. 2(a)] supported by C6 point group symmetry. If r1 > r2
(r1 < r2), the distance between the center-of-mass positions
of the two adjacent metagate segments is shorter (greater) when
they are positioned across the unit cell boundary versus within
the same unit cell. Qualitatively, if we consider each segment
to be an effective TB site, then the effective hopping strength
within a unit cell tin is weaker (stronger) than that across adja-
cent unit cells tout in the case of r1 > r2 (r1 < r2).

Any eigenstates on six hexagonal vertices can be described
by linear combinations of six orbital states: a monopole-like
(jsi¼ ½1;1;1;1;1;1�), two dipole-like (jp1i¼ ½1;1;0;−1;−1;0�,
jp2i ¼ ½1;−1;−2;−1; 1; 2�), two quadrupole-like (jd1i ¼
½1;−1; 0; 1;−1; 0�, jd2i ¼ ½1; 1;−2; 1; 1;−2�), and an octopole-
like (jfi ¼ ½1;−1; 1;−1; 1;−1�).26 The monopole and octopole
modes are at high energies, playing negligible roles for low-
energy physics (high/low compared to tin and tout). When two
hopping strengths are the same, the dipole and quadrupole modes
are degenerate at zero Bloch momentum just like in Fig. 1(e).
This is because, if tin ¼ tout, jp1,2i and jd1,2i become equivalent
with respect to the redefinition of the unit hexagon (around the
center hole or around a periphery hole). This fourfold degeneracy
is lifted when tin ≠ tout, as shown in Fig. 2(b). Specifically, the
dipole (quadrupole) modes can be shown to reside below (above)
the bandgap for tout < tin. Band inversion occurs between these
four orbitals around the Γ-point for the tout > tin case, thus
creating an insulating phase that is topologically distinct from
the “topologically trivial” insulating phase realized in the case
of tout < tin.

In electronic systems, such topologically nontrivial insulators
are sometimes referred to as quantum orbital-Hall insulators26

because their underlying cause—band inversion of orbital-locked
states—is reminiscent of that in quantum spin-Hall insulators.
Indeed, the low-energy effective four-band Hamiltonian around
the Γ point is characterized by a Z2 topological invariant16,26,27

(Z2 ¼ 0 for tout < tin and Z2 ¼ 1 for tout > tin) as in quantum
spin-Hall insulators (see the Supplementary Material). Thus
following the bulk-edge correspondence,11–13 linear edge states
should arise at the interface between the topological and trivial
domains. Indeed, we observe two expected domain wall states
in the bandgap, as shown in Fig. 2(c). The forward (backward)
propagating mode is linked to the orbital states such that the
relative phase of the lattice sites within a unit cell is increasing
in the counter-clockwise (clockwise) direction.

(a) (b) (c)

Fig. 2 (a) Schematic of the TB model on a Kekulé lattice. Shaded triangular segment of a meta-
gate maps onto a lattice site of the TB model. (b) PBS calculated for t in ¼ 1.1t∕tout ¼ 0.9t (left) and
t in ¼ 0.9t∕tout ¼ 1.1t (right). Color: ratio between the projection amplitudes onto the dipole-like
orbitals jp1,2i and onto the quadrupole-like orbitals jd1,2i. (c) PBS calculated for a structure inter-
facing the two configurations from (b) along the zigzag-oriented domain wall. Bandgap-crossing
purple lines: dispersion curves for the edge states propagating along the domain wall.
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3.3 Topological Crystalline Phase in Graphene
Plasmons

Next, we confirm that our metagate-tuned GPPs indeed exhibit
the two topologically distinct phases introduced above. This is
done by comparing the band structures and examining the plas-
monic mode profiles above and below the bandgap. Figure 3(a)
provides the GPP PBS calculated for two different cases: r1 ¼
90 nm and r2 ¼ 150 nm (topologically trivial case), and the
topologically nontrivial case of r1 ¼ 160 nm and r2 ¼ 110 nm.
Here r1 and r2 are chosen such that any adjacent holes are
clearly separated by at least a 40-nm gap. Plasmonic bandgaps
of similar sizes are opening for both configurations, and the
overall shape of the bands agrees with the band structures of
the TB model shown in Fig. 2(b). The dynamic charge density
in graphene associated with the propagating GPPs is plotted in
Fig. 3(b) for a single unit cell.

Next, we color-coded [Fig. 3(a)] each eigenstate according to
the ratio between the dipole and quadrupole strengths. By
comparing the left and right plots in Fig. 3(a), we note that
the band inversion predicted by the TB model is indeed ob-
served for the GPPs propagating through the modulated two-
dimensional Fermi energy landscape EFðx; yÞ in graphene.
As depicted in Fig. 3(b), the plasmonic modes near the Γ point
display dipole (quadrupole) charge distributions below the
bandgap when r1 is smaller (greater) than r2. Although the
visualized dipole-quadrupole ratio does not show a perfect
agreement between the plasmonic band structure and the TB
model, this is due to the fact that the actual plasmonic modes
are not strongly bounded as in the idealized TB model. To
account for weak localization more precisely, the effective TB
description would need to include the second (or higher) nearest
neighbor couplings. These minor discrepancies, however, can
be neglected since the simplest TB model can capture all the
topological features of our system.

3.4 Topologically Protected Plasmonic Edge States

To observe the topologically protected edge states propagating
along the domain wall between the trivial and nontrivial

topological domain, it is necessary to carry out additional engi-
neering of the interface between the two domains. This is
needed because the microscopic field profiles of the dipole
and quadrupole modes are not identical inside the two domains
owing to the change of the unit cell structure. Therefore, when
the two distinct metagate domains are interfaced, these abrupt
changes across the domain wall can introduce a small bandgap
between two edge states.26,27 To remove this gapping of the edge
states, we engineer the domain wall by setting the radius r0 of
the peripheral metagate holes (i.e., the holes at the domain wall)
to be the average of the two r2 values from each domain:
r ¼ ðr2e þ r2sÞ∕2. Here the subscripts s and e stand for the
shrunken (topologically trivial) and expanded (topologically
nontrivial) configuration, respectively. This additional interface
engineering mitigates the local C6 symmetry breaking at the in-
terface.

Next, we calculate the PBS of the GPPs propagating along
the zigzag-shaped domain wall oriented along the x direction.
The computational domain is comprised of 18 unit cells on each
side of the domain wall. The results are shown in Fig. 4(a),
where the black thin lines correspond to the projected bulk
modes (i.e., having the same value of kx), whereas the red (blue)
solid lines correspond to the forward (backward) propagating
chiral edge states. The edge states have been found to be expo-
nentially localized at the domain wall, as shown in Figs. 4(c) and
4(d), while the bulk modes are delocalized (not shown). The
effectiveness of the interface engineering described above is
apparent from the fact that the gap between the forward- and
backward-propagating edge modes is extremely small, as can
be seen in Fig. 4(a). The existence of an extremely small but
finite gapping of the edge modes due to symmetry breaking
at the domain wall has been noted earlier.27

As predicted by the TB model, the forward-propagating
mode (red circle) has the AC surface charge density distribution
with the phase increasing around the center holes in the
counterclockwise direction, see Fig. 4(c). Due to the mirror
symmetry in the nanoribbon, the backward-propagating mode
(blue circle) is a mirror image of the forward-propagating
mode. Therefore, these two modes form a chiral pair. We next
investigated the topological robustness of these chiral edge
states by modeling their propagation along a complex pathway
with several types of sharp corners along the domain wall.
For this simulation, each mode was selectively excited by
circularly polarized external surface currents [green lines in
Fig. 4(d): J� ¼ x̂� iŷ]. The modeling results shown in Fig. 4(d)
clearly indicate that the edge states are indeed immune to back-
scattering at all—60 deg, 90 deg, or 120 deg— lattice-preserving
sharp turns.

3.5 Midgap Topological Corner States

In addition to the Z2 invariant introduced above for character-
izing the quantum orbital-Hall effect, the C6 crystalline insulator
carries another binary invariant associated with topological cor-
ner charges:35 qc ≡ 0 (mod 1) for tout < tin and 1∕2 for tout > tin
(see the Supplementary Material). The nontrivial half corner
charge, given that the chiral symmetry is respected both inside
the domain and at its termination, gives rise to a corner-localized
mode in the middle of the bandgap.34 This midgap corner state
is a key-signature of second-order topological effects, where
a band topology of a d-dimensional crystal is manifested in
the ðd − 2Þ-dimensional observable. For 2-D crystalline PTIs,

(a)

(b)

Fig. 3 (a) Plasmonic band structures calculated for r1 ¼
90 nm∕r 2 ¼ 150 nm (left: topologically trivial domain) and r1 ¼
160 nm∕r 2 ¼ 110 nm (right: topologically nontrivial domain).
Line color: dipole-to-quadrupole ratios (see text). (b) Color: AC
surface charge density in graphene associated with the GPPs at
the Γ-point (below the bandgaps). Parameters: same as in Fig. 1.
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such observables are corner states that can be viewed as topo-
logically robust and highly localized photonic cavities. Below
we demonstrate that such nanocavities for GPPs can be devel-
oped using the metagate-graphene platform that enables us to
embed a topologically nontrivial PTI inside a topologically
trivial one.

One challenge in designing corner states in 2-D plasmonic
systems is that, unlike the case of a waveguide-based
platform34,43 that is naturally described within the framework
of a TB model, our plasmonic crystal does not possess strongly
localized/bounded lattice sites. Therefore, any abrupt termina-
tion of a domain causes large shifts in effective on-site poten-
tials, i.e., breaks the local chiral symmetry around a corner of the
structure. To be specific, when graphene is set to be undoped or

removed outside the domain boundary of our plasmonic crystal,
the resulting structure is mapped to a TB model with severe
redshifts in on-site potentials of boundary lattice sites (see the
Supplementary Material). To avoid such unwanted perturbation
along the boundary, we choose to imbed the topological domain
within a trivial C6 crystalline insulator. In other words, while we
are utilizing the same configuration as the one used for demon-
strating bandgap-spanning chiral edge states in Fig. 4, we are
now pursuing a different objective: to produce a sufficient
bandgap between the two edge states in order to spectrally
isolate the midgap state inside it. Therefore, we again used inter-
face engineering to maximize the gapping of the edge states.
As shown in Fig. 5(a), the size of the edge bandgap can be
tuned from almost negligible [as was done in Figs. 4(a) and
4(b), where peripheral hole radii at the domain wall were chosen
as r̄ ¼ ðr2s þ r2eÞ∕2] to large. The latter objective is accom-
plished by staggering the radii of the peripheral holes between
r2s and r2e, as shown on the right side of Fig. 5(a). Such inter-
face engineering amounts to edge roughening and enables us to
increase the edge bandgap in such a way that the corner states
appear near the middle of the bandgap.

Figure 5(b) shows the emergence of the expected topological
corner state. An eigensimulation for a structure with 120-deg-
angled corners reveals an eigenstate per corner that is well inside
the edge bandgap and localized around the corner. Also, the
mode profile of this corner state [Fig. 5(b) inset] features dom-
inant amplitudes at two effective lattice sites that are the second
corner-most, which exactly matches the reported result in
an earlier work.34 The density of states (DOS) was defined as
Im½Pn

1
ωn−ω�, where ωn is the complex eigenfrequency (energy).

The proposed approach of embedding an SOTI into a topo-
logically trivial structure and appropriately engineering the
interface between them can be applied to any subwavelength
platform. For example, we show in Figs. 5(c) and 5(d) that
a generic TB model predicts the same results. Figure 5(c) de-
scribes the way we incorporate the edge roughening effect into
the model. The relative strengths of hopping amplitudes are
determined by considering the widths of metagate junctions,
at which two adjacent effective lattice sites [Fig. 2(a)] meet
together. Comparing to the setting drawn on the right side of
Fig. 5(a), the hopping strengths are assigned to be proportionate
to the junction widths. Then the following results in Fig. 5(d)
confirm that the midgap corner state is guaranteed in this
scheme. The reason for this is that our plasmonic crystal is
not strictly chiral symmetric, as it is observed in Fig. 3(a) that
the lower two bands are not exact mirror images of the upper
two bands with respect to the midgap frequency. The exact
emulation of the chiral symmetric Hamiltonian is not possible
due to the weak localization of effective lattice sites and the
presence of additional bands at higher frequencies.

To ensure that the DOS peak corresponding to a corner state
is clearly standing out from the DOS due to the edge states, in-
trinsic graphene losses must be taken into account. At cryogenic
temperatures (T ¼ 20 to 100 K), the intrinsic plasmonic loss in
graphene is primarily due to the pseudomagnetic field induced
by electron–phonon scattering:10 γ∕2π ¼ ½1.5 × ðEF in eVÞ×
ðT in KÞ� GHz (see the Supplementary Material). Thus, for the
DOS calculation in Fig. 5(b) we used γ∕2π ¼ 20 GHz from
EF ¼ 0.15 eV and T ¼ 90 K. Then the peak from the corner
state contribution is clearly separated from other peaks, indicat-
ing that the observation of the corner state would be experimen-
tally feasible at cryogenic settings.

(a)

(d)

(b) (c)

Fig. 4 (a) Projection of the PBS of the GPPs supported by a gra-
phene nanoribbon gated by a metagate comprised of the two
domains shown in Fig. 3. Each domain contains 18 unit cells,
zigzag-type domain wall runs parallel to the x -direction, the ra-
dius of peripheral holes at the domain wall: r ¼ 130 nm. Black
thin lines: x -projected bulk bands; red (blue) lines and circles:
forward (backward)-propagating chiral edge states. (b) Metagate-
induced Fermi energy profile on graphene near the domain boun-
dary (white dotted line). (c) AC plasma charge density profiles
for the forward- and backward-propagating edge states. 2-D
color code: the magnitude and phase of the charge density.
The gray arrows: guiding to the eye for the directions of the phase
increase. (d) Reflection-free propagation of topological edge
modes along the domain wall with sharp corners. The forward
(backward) mode on the left (right) is excited at f ¼ 4.05 THz
with a surface current density (green arrows) Jþ ¼ x̂þ i ŷ
(J− ¼ x̂ − i ŷ). Color plots are absolute squares of the out-of-plane
electric field. Parameters: same as in Figs. 1 and 3.
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3.6 Nonlocal Optical Response of Dirac Electrons

So far, we have used the semiclassical Drude model [Eq. (2)] to
describe graphene optical conductivity. Several experimental
works3,4,8,9 have, however, revealed that the quantum nonlocal
response of Dirac electrons needs to be considered for the pre-
cise prediction of graphene plasmon dispersion. The nonlocal
optical conductivity in homogeneously doped graphene is de-
scribed accurately enough at the random phase approximation
(RPA) level2–4,31

σRPAðω; qÞ ¼ σDrude × f

��
vFjqj
ω

�
2
�
; (2)

where fðzÞ is a dimensionless correction factor that describes
the nonlocal effect,

fðzÞ ¼ 2

z

�
1ffiffiffiffiffiffiffiffiffiffiffi
1 − z

p − 1

�
¼ 1þ 3

4
zþ 5

8
z2 þOðz3Þ: (3)

Equation (2) is valid only when vF jqj
ω < 1 and ℏω ≪ jEFj.

Note that fðzÞ is an increasing function in z bounded below
by 1. This momentum-dependent rise of conductivity stems from
velocity matching between the Dirac electrons, traveling at vF,
and plasmons, traveling at vp ¼ ω∕jqj; as z ¼ ðvF∕vpÞ2 → 1.

The electrons interact longer with each plasma wavefront
and, therefore, exhibit an enhanced response.4

For nonlocal RPA conductivity under a spatially varying
Fermi level, as in our metagate-tuned graphene, we adopt a
semiphenomenological extension from the homogeneous case31,47

σ½n�phenoðω; q; q0Þ ¼
ie2

πℏ2

ẼFðq − q0Þ
ωþ iγ

f½n�
�
v2Fq · q0

ω2

�
; (4)

where f½n�ðzÞ is the Taylor expansion of fðzÞ in Eq. (3) up to the
n’th order term, and ~EFðqÞ is the Fourier transform of EFðrÞ.
Equation (4) reduces back to Eq. (2) under a constant Fermi level:
ẼFðqÞ ¼ EFδq;0 → σphenoðω; q; q0Þ ¼ δq;q0σRPAðω; qÞ. Also, the
local Drude model is equivalent to the case n ¼ 0. The effective-
ness of Eq. (4) with n ¼ 1 has been verified in a recent exper-
imental work.3

Figure 6 shows how much the topological bandgap in our
metagate-tuned plasmonic crystal gets shifted by the quantum
nonlocal effect. We consider two cases: (a) V0 ¼ 1 V, as as-
sumed so far, and (b) V0 ¼ 0.05 V, to demonstrate a case where
nonlocal responses become significant. With V0 ¼ 1 → 0.05 V,
GPP frequencies are roughly halved; ω ∝ V1∕4

0 [Eq. (1)].
As stated earlier, Eqs. (2) and (4) are valid only when
ρ ≡ vF jqj

ω < 1. Here the dimensionless quantity ρ is a measure
of the importance of the nonlocal quantum effects.31 Bloch

(a)

(b) (d)

(c)

Fig. 5 Designer interfaces between topologically distinct PTIs enable nanoscale waveguides and
cavities. (a) Left: a uniform domain wall configuration used in Fig. 4 for supporting bandgap-
spanning chiral edge modes. Right: staggered domain wall for supporting cavity-like corner
modes. Small icons above the arrow denote the 1-D band structures for each domain wall type.
(b) Left: gapping of the edge states supported by the staggered domain wall (r1e ¼ 165 nm,
r2e ¼ 120 nm, r1s ¼ 100 nm, and r2s ¼ 155 nm) enables corner states. Right: DOS for the topo-
logical (expanded) domain (10 × 10 unit cells) imbedded into a trivial (shrunken) domain. Inset: the
field profile of a midgap corner state. (c) A TB model qualitatively mimics the imbedded structure
with a staggered domain wall. Small circles: sublattice sites, color-coded links: hopping ampli-
tudes. (d) Same as (b), but for the TB model shown in (c).
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eigenstates in a periodic system contain many wavevector
components, but here we take only the primary wavevector for
simplicity in estimating ρ.18 The primary wavevector for dipole
and quadrupole states around the plasmonic bandgap shown in
Fig. 3(a) is Γ with the first band folding; that is, its magnitude is
jqj ¼ 4πffiffi

3
p

a
. For case (a), ω∕2π is around 4 THz, and thereby we

get ρ ≈ 0.5. As a result, the resonance shift shown in Fig. 6(a) is
insignificant compared to the bandgap size, and the nonlocal
effect converges rapidly at the first two orders. For case (b),
we get ρ ≈ 1.0 from ω∕2π ≈ 2 THz. With ρ approaching near
unity, the nonlocal correction already exceeds the bandgap size
at the first order and keeps increasing as the higher-order terms
are added [see Fig. 6(b)]. Thus Eq. (4) is applicable only under
high gate voltages and fails to be an effective description as
ρ → 1.

4 Discussion
We emphasize that our metagate-graphene structure was de-
signed for experimentally feasible low-loss propagation of
topological GPP excitations. Thus our structure is designed
to operate at a few THz frequency range, where the dielectric
losses from hBN or SiO2 phonon absorptions are vanishing.
Then the 1∕e decay length of the topological chiral GPPs in
Fig. 4 can be estimated to be ω

γ
1
jqj ≈ 30a if we assume γ∕2π ¼

20 GHz. Considering that the lateral confinement of the edge
states shown in Fig. 4(c) is 3 to 4 unit cells, it should be possible
to observe the propagation along the sharp turns shown in
Fig. 4(d). Also, we expect that the second-order topological
corner state can be efficiently excited, featuring a high quality
factor (Q ∼ 400). Again, our metagate scheme plays an essential
role in enabling this low-loss operation through avoiding direct
patterning of graphene.

Our metagate-tuned graphene system serves as an interesting
case where topological photonics becomes a useful tool for
unraveling condensed matter properties. Figure 6 suggests that
we can electrically tune the proposed system from a condition in
which Eq. (4) is effective, to another in which a modification is
required. In this sense, our platform can be used to study
quantum nonlocal effects in periodically doped graphene. For
example, it is known that when the nonlocal response strength
parameter ρ becomes greater than 1, graphene plasmons expe-
rience severe Landau damping.4,18 The Bloch states in our plas-
monic crystal are described by multiple ρ values from multiple

wavevector components. It is an intriguing problem to ask
whether the reflection-free propagation of 1-D topological
Bloch states would be disabled by this selective Landau damp-
ing acting on a particular set of wavevectors. Thus exotic optical
properties of Dirac electrons under strongly modulated Fermi
surfaces can be revealed by examining how our plasmonic crys-
tal deviates from the predictions based on local descriptions or
trivial nonlocal corrections.

In conclusion, we have designed a nanophotonic platform for
achieving two types of topologically robust optical elements
based on graphene plasmons: a topological crystalline insulator
for making reflections-free waveguides and a second-order PTI
for making robust nanocavities. The platform consists of a
single-layer graphene that is electrically biased using a designer
metagate: an array of holes forming a honeycomb lattice with
a Kekulé distortion. We demonstrate that the change from the
propagating GPPs guided in two dimensions to cavity-like plas-
mons localized in all three dimensions can be accomplished by
engineering the interface between two plasmonic PTIs: trivial
and topological. We envision that the metagate geometry intro-
duced in this work can also be used for realizing fractionalized
Kekulé-vortex states33 with graphene plasmons as well as many
other topological phenomena such as strain-induced pseudo-
magnetic fields.48 Also, by adding the second gate (a top meta-
gate or a simple backgate beneath the existing metagate), the
electric control over topological plasmons can be greatly en-
hanced to enable switching between distinct low-dimensional
topological phases.49 This would constitute a major advance
over the single-gate geometry analyzed here, e.g., switching
between two domain wall configurations in Fig. 5(a). Our
metagate approach, combined with engineered domain walls
between topologically different PTIs, paves the way to novel
methods of manipulating nanolight in graphene and for devel-
oping topologically robust devices.
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